MERCEDES AMG GT3 **USER MANUAL** **CLICK TO VIEW A SECTION** ## **GENERAL INFORMATION** 3 A Message From iRacing » 4 Tech Specs » 5 Introduction » 5 Getting Started » Loading An iRacing Setup » 6 Dash Pages » 7 7 Lighting Indicators » Dash Configuration » 8 9 Pit Limiter & Shift Lights » ## ADVANCED SETUP OPTIONS Tires & Aero » 10 Tire Settings » 10 Aero Calculator » 11 Chassis » 13 13 Front » In-Car Dials » 14 Front Corners » 15 Rear Corners >> 18 Rear » 20 ## **DEAR IRACING USER,** Congratulations on your purchase of the Mercedes AMG GT3! From all of us at iRacing, we appreciate your support and your commitment to our product. We aim to deliver the ultimate sim racing experience, and we hope that you'll find plenty of excitement with us behind the wheel of your new car! With a lineage hearkening back to the SLS AMG GT3 and more than 180 wins in international competition from Bathurst and Dubai to Spa and the Nürburgring, the Mercedes AMG GT3 is a potent addition to the GT3 category. While styling cues like its gullwing doors and Panamericana radiator grille pay homage to Mercedes' glorious history, the Mercedes AMG GT3 epitomizes state-of-the-art technology with its "front mid-engine" 6.2 liter, DOHC V8 and six speed sequential gearbox mounted in a transaxle to provide optimum weight distribution. Aluminum, double wishbone suspension, multi-disc, limited-slip differential and traction control complete a package campaigned by the likes of Black Falcon, Fortec, GT Russian and Rowe Racing in the Blancpain GT and Blancpain Endurance Series. The following guide explains how to get the most out of your new car, from how to adjust its settings off of the track to what you'll see inside of the cockpit while driving. We hope that you'll find it useful in getting up to speed. Thanks again for your purchase, and we'll see you on the track! DOUBLE WISHBONE FRONT AND **REAR SUSPENSION** 4710mm 185.4in 1990mm 78.3in WHEELBASE **2635mm 103.7in** 1285kg 2833lbs WET WEIGHT WITH DRIVER 1412kg 3112lbs 6.2Liters 378.8CID 7500RPM TORQUE 460lb-ft 625Nm POWER **500bhp 373kW** ## Introduction The information found in this guide is intended to provide a deeper understanding of the chassis setup adjustments available in the garage, so that you may use the garage to tune the chassis setup to your preference. Before diving into chassis adjustments, though, it is best to become familiar with the car and track. To that end, we have provided baseline setups for each track commonly raced by these cars. To access the baseline setups, simply open the Garage, click iRacing Setups, and select the appropriate setup for your track of choice. If you are driving a track for which a dedicated baseline setup is not included, you may select a setup for a similar track to use as your baseline. After you have selected an appropriate setup, get on track and focus on making smooth and consistent laps, identifying the proper racing line and experiencing tire wear and handling trends over a number of laps. Once you are confident that you are nearing your driving potential with the included baseline setups, read on to begin tuning the car to your handling preferences. ## **GETTING STARTED** Before starting the car, it is recommended to map controls for Brake Bias, Traction Control and ABS adjustments. While this is not mandatory to drive the car, this will allow you to make quick changes to the driver aid systems to suit your driving style while out on the track. Once you load into the car, getting started is as easy as selecting the "upshift" button to put it into gear, and hitting the accelerator pedal. This car uses a sequential transmission and does not require a clutch input to shift in either direction. However the car's downshift protection will not allow you to downshift if it feels you are traveling too fast for the gear selected and would incur engine damage. If that is the case, the gear change command will simply be ignored. Upshifting is recommended when the final green light illuminates in the shift light cluster. This is at approximately 6500rpm. ## LOADING AN IRACING SETUP Upon loading into a session, the car will automatically load the iRacing Baseline setup [baseline.sto]. If you would prefer one of iRacing's pre-built setups that suit various conditions, you may load it by clicking Garage > iRacing Setups > and then selecting the setup to suit your needs. If you would like to customize the setup, simply make the changes in the garage that you would like to update and click apply. If you would like to save your setup for future use click "Save As" on the right to name and save the changes. To access all of your personally saved setups, click "My Setups" on the right side of the garage. If you would like to share a setup with another driver or everyone in a session, you can select "Share" on the right side of the garage to do so. If a driver is trying to share a setup with you, you will find it under "Shared Setups" on the right side of the garage as well. # Dash Pages The dash display in this car is non-adjustable and features a single page to display critical vehicle information. ## LIGHTING INDICATORS ## **LEFT LIGHT STACK** ABS warning, illuminated when ABS is disabled ASR Traction control warning, illuminated when traction control is disabled ## **RIGHT LIGHT STACK** **HIGHBEAM** Indicates if the headlight high beam is active in the real car **LOWBEAM** Indicates if the headlight low beam is active (always illuminated) **INDICATOR** Indicates if the side indicators are active in the real car ## **DASH CONFIGURATION** ## **TOP ROW** **RPM METER** Graphical depiction of engine rpm ## **SECOND ROW** **T WATER** Engine water temperature (°C or °F) LAPTIME DIFF Current lap time **SPEED** Road speed (km/h or mph) ## **THIRD ROW** **POIL** Engine oil pressure (Bar or psi) **GEAR** Currently selected gear **ABS** Current ABS setting TC Current traction control setting ### **FOURTH ROW** **T GEAR** Gearbox oil temperature (°C or °F) MAP Current engine map setting **FUEL CALC** Remaining fuel (Litres or US gallons) ## PIT LIMITER When the pit limiter is active a large blue box that includes the current road speed will display across the top of the dashboard while the center six shift light LED's will illuminate in a yellow and blue sequence. ## SHIFT LIGHTS 2 GREEN 6200 rpm 4 GREEN 6300 rpm 6 GREEN 6400 rpm 8 GREEN 6500 rpm 2 RED 6600 rpm ALL RED 6800 rpm ## ADVANCED SETUP OPTIONS This section is aimed toward more advanced users who want to dive deeper into the different aspects of the vehicle's setup. Making adjustments to the following parameters is not required and can lead to significant changes in the way a vehicle handles. It is recommended that any adjustments are made in an incremental fashion and only singular variables are adjusted before testing changes. ## Tires & Aero ## TIRE SETTINGS (ALL FOUR) ## **COLD AIR PRESSURE** Air pressure in the tire when the car is loaded into the world. Higher pressures will reduce rolling drag and heat buildup, but will decrease grip. Lower pressures will increase rolling drag and heat buildup, but will increase grip. Higher speeds and loads require higher pressures, while lower speeds and loads will see better performance from lower pressures. Cold pressures should be set to track characteristics for optimum performance. Generally speaking, it is advisable to start at lower pressures and work your way upwards as required. #### **HOT AIR PRESSURE** Air pressure in the tire after the car has returned to the pits. The difference between cold and hot pressures can be used to identify how the car is progressing through a run in terms of balance, with heavier-loaded tires seeing a larger difference between cold and hot pressures. Ideally, tires that are worked in a similar way should build pressure at the same rate to prevent a change in handling balance over the life of the tire, so cold pressures should be adjusted to ensure that similar tires are at similar pressures once up to operating temperature. Hot pressures should be analysed once the tires have stabilised after a period of laps. As the number of laps per run will vary depending upon track length a good starting point is approximately 50% of a full fuel run. ### **TIRE TEMPERATURES** Tire carcass temperatures, measured via Pyrometer, once the car has returned to the pits. Wheel Loads and the amount of work a tire is doing on-track are reflected in the tire's temperature, and these values can be used to analyze the car's handling balance. Center temperatures are useful for directly comparing the work done by each tire, while the Inner and Outer temperatures are useful for analyzing the wheel alignment (predominantly camber) while on track. These values are measured in three zones across the tread of the tire. Inside, Middle and Outer. ### TREAD REMAINING The amount of tread remaining on the tire once the car has returned to the pits. Tire wear is very helpful in identifying any possible issues with alignment, such as one side of the tire wearing excessively, and can be used in conjunction with tire temperatures to analyze the car's handling balance. These values are measured in the same zones as those of temperature. ## AERO CALCULATOR The Aero Calculator is a tool provided to aid in understanding the shift in aerodynamic balance associated with adjustment of the rear wing setting and front and rear ride heights. It is important to note that the values for front and rear ride height displayed here DO NOT result in any mechanical changes to the car itself, however, changes to the rear wing angle here WILL be applied to the car. This calculator is a reference tool ONLY. ## FRONT RH AT SPEED The Ride Height (RH) at Speed is used to give the Aero Calculator heights to reference for aerodynamic calculations. When using the aero calculator, determine the car's Front Ride height via telemetry at any point on track and input that value into the "Front RH at Speed" setting. It is advisable to use an average value of the LF and RF ride heights as this will provide a more accurate representation of the current aero platform rather than using a single corner height. ### **REAR RH AT SPEED** The Ride Height (RH) at Speed is used to give the Aero Calculator heights to reference for aerodynamic calculations. When using the aero calculator, determine the car's Rear Ride height via telemetry at any point on track and input that value into the "Front RH at Speed" setting. It is advisable to use an average value of the LR and RR ride heights as this will provide a more accurate representation of the current aero platform rather than using a single corner height. ### **WING SETTING** The wing setting refers to the relative angle of attack of the rear wing, this is a powerful aerodynamic device which has a significant impact upon the total downforce (and drag!) produced by the car as well as shifting the aerodynamic balance of the car rearwards with increasing angle. Increasing the rear wing angle results in more total cornering grip capability in medium to high speed corners but will also result in a reduction of straight line speed. Rear wing angle should be adjusted in conjunction with front and rear ride heights, specifically the difference between front and rear ride heights known as 'rake'. To retain the same overall aerodynamic balance it is necessary to increase the rake of the car when increasing the rear wing angle. ## FRONT DOWNFORCE This value displays the proportion of downforce acting at the front axle for the given wing and ride height combination set within the calculator parameters. This value is an instantaneous representation of your aero balance at this exact set of parameters and it can be helpful to pick multiple points around a corner or section of track to understand how the aerodynamic balance is moving in differing situations such as braking, steady state cornering and accelerating at corner exit. A higher forwards percentage will result in more oversteer in mid to high speed corners. ## Chassis ## FRONT ## **ARB BLADES** The configuration of the Anti-Roll Bar arms, or "blades", can be changed to alter the overall stiffness of the ARB assembly. Increasing the number of ARB arms will increase the roll stiffness of the front suspension, resulting in less body roll but increasing mechanical understeer. This can also, in some cases, lead to a more responsive steering feel from the driver. Conversely, reducing the number of ARB arms will soften the suspension in roll, increasing body roll but decreasing mechanical understeer. This can result in a less-responsive feel from the steering, but grip across the front axle will increase. Along with this, the effects of softening or stiffening the ARB assembly in relation to aerodynamics should also be considered, softer ARB assemblies will result in more body roll which will decrease control of the aero platform in high speed corners and potentially lead to a loss in aero efficiency. 10 configurations of ARB arms are available and range from D1-D1 (softest) to D6-D6 (stiffest). ## TOE-IN Toe is the angle of the wheel, when viewed from above, relative to the centerline of the chassis. Toe-in is when the front of the wheel is closer to the centerline than the rear of the wheel, and Toe-out is the opposite. On the front end, adding toe-out will increase slip in the inside tire while adding toe-in will reduce the slip. Toe-out will decrease straight-line stability but will increase turn-in responsiveness. Toe-in at the front will reduce turn-in responsiveness but will reduce temperature buildup in the front tires. #### FRONT MASTER CYLINDER The Front Brake Master Cylinder size can be changed to alter the line pressure to the front brake calipers. A larger master cylinder will reduce the line pressure to the front brakes, this will shift the brake bias rearwards and increase the pedal effort required to lock the front wheels. A smaller master cylinder will do the opposite and increase brake line pressure to the front brakes, shifting brake bias forward and reducing required pedal effort. 7 Different master cylinder options are available ranging from 15.9 mm / 0.626" (highest line pressure) to 23.8 mm / 0.937" (lowest line pressure). ## **REAR MASTER CYLINDER** The Rear Brake Master Cylinder size can be changed to alter the line pressure to the rear brake calipers. A larger master cylinder will reduce the line pressure to the rear brakes, this will shift the brake bias forwards and increase the pedal effort required to lock the rear wheels. A smaller master cylinder will do the opposite and increase brake line pressure to the rear brakes, shifting brake bias rearward and reducing required pedal effort. 7 Different master cylinder options are available ranging from 15.9 mm / 0.626" (highest line pressure) to 23.8 mm / 0.937" (lowest line pressure). ## **BRAKE PADS** The vehicle's braking performance can be altered via the Brake Pad Compound. The "Low" setting provides the least friction, reducing the effectiveness of the brakes, while "Medium" and "High" provide more friction and increase the effectiveness of the brakes while increasing the risk of a brake lockup. ### **CROSS WEIGHT** The percentage of total vehicle weight in the garage acting across the right front and left rear corners. 50.0% is generally optimal for non-oval tracks as this will produce symmetrical handling in both left and right hand corners providing all other chassis settings are symmetrical. Higher than 50% cross weight will result in more understeer in left hand corners and increased oversteer in right hand corners, cross weight can be adjusted by making changes to the spring perch offsets at each corner of the car. ## IN-CAR DIALS #### **BRAKE PRESSURE BIAS** Brake Bias is the percentage of braking force that is being sent to the front brakes. Values above 50% result in greater pressure in the front brake line relative to the rear brake line which will shift the brake balance forwards increasing the tendency to lock up the front tyres but potentially increasing overall stability in braking zones. This should be tuned for both driver preference and track conditions to get the optimum braking performance for a given situation. It is important to note that differing combinations of master cylinder size will necessitate differing brake pressure bias values, this is because increasing or reducing the split in master cylinder size difference between front and rear axles will produce an inherent forward or rearward bias in brake line pressure. ### TRACTION CONTROL SWITCH This option determines if traction control is enabled, allowing you to completely disable the system if desired. #### TRACTION CONTROL SETTING The position of the traction control switch determines how aggressively the ecu cuts engine torque in reaction to rear wheel spin. 12 positions are available. Settings 1-12 range from most intervention/sensitivity (position 1) through to least intervention/sensitivity (position 12). Position 6 is the recommended baseline setting. More intervention will result in less wheelspin and less rear tire wear but can reduce overall performance if the traction control is cutting engine torque too aggressively and stunting corner exit acceleration. #### **ENGINE MAP SETTING** The fuel map on which the car is currently running. Position 3 is the base map and produces maximum power but the most fuel usage. Positions 1 and 2 are for fuel saving and will reduce engine power output correspondingly. The lower the number the better the fuel economy but the lower the power output. #### **ABS SWITCH** This option determines if the anti-lock braking system is enabled, allowing you to completely disable the system if desired. ### **ABS SETTING** The current ABS map the car is running. 12 positions are available. Position 1 has the least intervention/support while position 11 has the most support. Position 12 disables the ABS completely. Position 4 is the recommended baseline setting. More intervention reduces the possibility of and the duration of lockups during braking but can result in longer braking distances if the system is set overly aggressive for the amount of available grip. ## FRONT CORNERS ## **CORNER WEIGHT** The weight underneath each tire under static conditions in the garage. Correct weight arrangement around the car is crucial for optimizing a car for a given track and conditions. Individual wheel weight adjustments and crossweight adjustments are made via the spring perch offset adjustments at each corner. ### FRONT RIDE HEIGHT Distance from ground to a reference point on the chassis. Since these values are measured to a specific reference point on the car, these values may not necessarily reflect the vehicle's ground clearance, but instead provide a reliable value for the height of the car off of the race track at static values. Adjusting Ride Heights is key for optimum performance, as they can directly influence the vehicle's aerodynamic performance as well as mechanical grip. Increasing front ride height will decrease front downforce as well as decrease overall downforce, but will allow for more weight transfer across the front axle when cornering. Conversely, reducing ride height will increase front and overall downforce, but reduce the weight transfer across the front axle. Minimum legal front ride height is 50.0 mm. ## **SPRING PERCH OFFSET** Used to adjust the ride height at this corner of the car by changing the installed position of the spring. Increasing the spring perch offset will result in lowering this corner of the car while reducing the spring perch offset will raise this corner of the car. These changes should be kept symmetrical across the axle (left to right) to ensure the same corner ride heights and no change in cross weight. The spring perch offsets can also be used in diagonal pairs (LF to RR and RF to LR) to change the static cross weight in the car. ## **SPRING SET** This setting determines the installed corner spring stiffness. The Mercedes AMG GT3 is unique in that corner springs cannot be changed independently but instead are separated into 3 packages. Spring Set 1 should be treated as the baseline setup and utilizes 275 N/mm (1571 lbs/in) front springs with 250 N/mm (1429 lbs/in) rear springs. Set 2 is the most aggressive spring package utilising 225 N/mm (1286 lbs/in) front springs with 250 N/mm (1429 lbs/in) rear springs and will shift the balance towards oversteer (loose). Set 3 is the most conservative option featuring 275 N/mm (1571 lbs/in) front springs with 225 N/mm (1286 lbs/in) rear springs which will shift the balance towards understeer (tight). Corner spring changes will influence both roll and pitch control of the platform and ARB changes should be considered when altering corner spring stiffnesses in order to retain the same front to rear roll stiffness and overall balance. When reducing corner spring stiffness the ARB stiffness should be increased to retain the same roll stiffness as previously. As an example case, a car which suffers from high speed understeer but low speed oversteer could benefit from an increase in rear spring stiffness. This will allow for a lower static rear height which will reduce rear weight transfer during slow speed cornering while maintaining or even increasing the rear ride height in high speed cornering to shift the aerodynamic balance forwards and reduce understeer. Spring perch offsets must always be adjusted to return the car to the prior static ride heights after any spring set change. ## **BUMP RUBBERS** Bump rubbers are an option that may be fitted to the front suspension for additional ride height control and increased effective front suspension stiffness. These rubbers act as non-linear rising rate springs which will produce exceptional ride height control on smooth tracks however, fitting them will result in a reduction in mechanical grip at this axle and poorer absorption of large impacts such as kerb strikes. As such, they are best avoided at rougher tracks. ### LS COMP DAMPING Low speed compression affects how resistant the shock is to compresion (reduction in length) when the shock is moving at relatively low speeds, usually in chassis movements as a result of driver input (steering, braking, & throttle) and cornering forces. In this case 1 is minimum damping (least resistance to compression) while 8 is maximum damping (most resistance to compression). Increasing the low speed compression damping will result in a faster transfer of weight to this corner of the car during transient movements such as braking and direction change with increased damping usually providing an increase in turn-in response but a reduction in overall grip in the context of front dampers. ### **HS COMP DAMPING** High speed compression affects the shock's behavior in high speed travel, usually attributed to curb strikes and bumps in the track's surface. Higher compression values will cause the suspension to be stiffer in these situations, while lower values will allow the suspension to absorb these bumps better but may hurt the aerodynamic platform around the track. At smoother tracks more high speed compression damping will typically increase performance while at rougher tracks or ones with aggressive kerbs less high speed compression damping can result in an increase in mechanical grip at the expense of platform control. 8 is maximum damping while 1 is minimum damping. ### **LS RBD DAMPING** Low speed rebound damping controls the stiffness of the shock while extending at lower speeds, typically during body movement as a result of driver inputs. Higher rebound values will resist expansion of the shock, lower values will allow the shock to extend faster. Higher rebound values can better control aerodynamic attitude but can result in the wheel being unloaded when the suspension can't expand enough to maintain proper contact with the track. When tuning for handling, higher front low speed rebound can increase on-throttle mechanical understeer (but reduce nose lift) while lower values will maintain front end grip longer, helping to reduce understeer, but will allow more splitter lift. Excessive front rebound can lead to unwanted oscillations due to the wheel bouncing off of the track surface instead of staying in contact. 8 is maximum damping (most resistant to extension) while 1 is minimum damping (least resistance to extension). ## **HS RBD DAMPING:** High-speed rebound adjusts the shock in extension over bumps and curb strikes. Higher values will reduce how quickly the shock will expand, while lower values will allow the shock to extend more easily. Despite not having as much of an effect on handling in result to driver inputs, High-speed rebound can produce similar results in terms of aerodynamic control and uncontrolled oscillations if set improperly. 8 is maximum damping while 1 is minimum damping. ## **CAMBER** Camber is the vertical angle of the wheel relative to the center of the chassis. Negative camber is when the top of the wheel is closer to the chassis centerline than the bottom of the wheel, positive camber is when the top of the tire is farther out than the bottom. Due to suspension geometry and corner loads, negative camber is desired on all four wheels. Higher negative camber values will increase the cornering force generated by the tire, but will reduce the amount of longitudinal grip the tire will have under braking. Excessive camber values can produce very high cornering forces but will also significantly reduce tire life, so it is important to find a balance between life and performance. Increasing front camber values will typically result in increased front axle grip during mid to high speed cornering but will result in a loss of braking performance and necessitate a rearward shift in brake bias to compensate. ## **CASTER** Caster is the vertical angle of the steering axis relative to the side view of the chassis. Positive caster angle is where the steering axis is leaned rearwards from this viewpoint, the more caster the larger the total trail of the contact patch behind the steering axis. More caster angle will result in the mechanical trail being a larger proportion of the felt steering weight relative to the tires pneumatic trail. This will result in a heavier overall steering feel but a possible loss in felt feedback from the tire. Increasing caster angle will also have secondary effects such as an increase in dynamic camber when turning the wheel through large steering angles which can be beneficial in chicances or hairpins. As well as this the more caster angle the greater the jacking effect during cornering which will result in lifting the inside front wheel while lowering the outside front wheel. This jacking effect will also result in the unloading and potentially lifting of the inside rear wheel which can aid in rotation around tight corners. ## REAR CORNERS ## **REAR RIDE HEIGHT** Distance from ground to a reference point on the rear of the chassis. Increasing rear ride height will decrease rear downforce as well as increase overall downforce and will allow for more weight transfer across the rear axle when cornering. Conversely, reducing ride height will increase rear downforce percentage but reduce overall downforce while reducing the weight transfer across the rear axle. Rear ride height is a critical tuning component for both mechanical and aerodynamic balance considerations and static rear ride heights should be considered and matched to the chosen rear corner springs for optimal performance. Minimum legal rear ride height is 50.0 mm while maximum legal rear ride height is 92.5 mm. ## **BUMP RUBBERS** Bump rubbers are an option that may be fitted to the rear suspension for additional ride height control and increased effective rear suspension stiffness. These rubbers act as non-linear rising rate springs which will produce exceptional ride height control on smooth tracks however, fitting them will result in a reduction in mechanical grip at this axle and poorer absorption of large impacts such as kerb strikes. As such, they are best avoided at rougher tracks. ## LS COMP DAMPING Low speed compression affects how resistant the shock is to compresion (reduction in length) when the shock is moving at relatively low speeds, usually in chassis movements as a result of driver input (steering, braking, & throttle) and cornering forces. In this case 1 is minimum damping (least resistance to compression) while 8 is maximum damping (most resistance to compression). Increasing the low speed compression damping will result in a faster transfer of weight to this corner of the car during transient movements such as braking and direction change with increased damping usually increasing the cars tendency to understeer on throttle application. ### **HS COMP DAMPING** High speed compression affects the shock's behavior in high speed travel, usually attributed to curb strikes and bumps in the track's surface. Higher compression values will cause the suspension to be stiffer in these situations, while lower values will allow the suspension to absorb these bumps better but may hurt the aerodynamic platform around the track. At smoother tracks more high speed compression damping will typically increase performance while at rougher tracks or ones with aggressive kerbs less high speed compression damping can result in an increase in mechanical grip at the expense of platform control. 8 is maximum damping while 1 is minimum damping. #### **LS RBD DAMPING** Low speed rebound damping controls the stiffness of the shock while extending at lower speeds, typically during body movement as a result of driver inputs. Higher rebound values will resist expansion of the shock, lower values will allow the shock to extend faster. As at the front, high rebound stiffness will result in improved platform control for aerodynamic performance and overall chassis response but it is important to avoid situations where the shock is too slow in rebounding as this can result in the tire losing complete contact with the track surface. Provided this is avoided,, an increase in rebound stiffness can help to 'slow down' the change in pitch of the car as the brakes are applied, increasing braking stability and off-throttle mechanical understeer. 8 is maximum damping (most resistant to extension) while 1 is minimum damping (least resistance to extension). ### **HS RBD DAMPING:** High-speed rebound adjusts the shock in extension over bumps and curb strikes. Higher values will reduce how quickly the shock will expand, while lower values will allow the shock to extend more easily. Despite not having as much of an effect on handling in result to driver inputs, High-speed rebound can produce similar results in terms of aerodynamic control and uncontrolled oscillations if set improperly. 8 is maximum damping while 1 is minimum damping. ### **CAMBER** As at the front of the car it is desirable to run significant amounts of negative camber in order to increase the lateral grip capability however, it is typical to run slightly reduced rear camber relative to the front. This is primarily for two reasons, firstly, the rear tires are 25 mm (~1") wider compared to the fronts and secondly the rear tires must also perform the duty of driving the car forwards where benefits of camber to lateral grip become a tradeoff against reduced longitudinal (traction) performance. ## **TOE-IN** At the rear of the car it is typical to run toe-in. Increasing toe-in will result in improved straight line stability and a reduction in response during direction changes. Large values of toe-in should be avoided if possible as this will increase rolling drag and reduce straight line speeds. ## REAR #### **FUEL LEVEL** The amount of fuel in the fuel tank. Tank capacity is 120 L (31.7 g). Adjustable in 1 L (0.26 g) increments. #### **ARB ARMS** The configuration of the Anti-Roll Bar arms, or "blades", can be changed to alter the overall stiffness of the ARB assembly. Increasing the ARB assembly stiffness will increase the roll stiffness of the rear suspension, resulting in less body roll but increasing mechanical oversteer. This can also cause the car "take a set" more quickly at initial turn-in. Conversely, reducing the ARB assembly stiffness will soften the suspension in roll, increasing body roll but decreasing mechanical oversteer. This can result in a less-responsive feel from the rear especially in transient movements, but grip across the rear axle will increase. 4 configurations of ARB arms are available and range from D1 (softest) to D4 (stiffest). ## **DIFF PRELOAD** Diff preload is a static amount of locking force present within the differential and remains constant during both acceleration and deceleration. Increasing diff preload will increase locking on both sides of the differential which will result in more understeer when off throttle and more snap oversteer with aggressive throttle application. Increasing the diff preload will also smooth the transition between on and off throttle behaviour as the differential locking force will never reach zero which can be helpful in reducing lift-off oversteer and increasing driver confidence. Typically diff preload should be increased when there is noticeable loss in slow corner exit drive and/or over-rotation during transition between the throttle and brake in low to mid speed corners.